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Abstract

This paper presents an interactive bootstrapping process used in 
Splunk that automatically learns to extract fields from log events. 
End users  simply  select  one or more example  values  of a field 
and a learning process discovers additional instances, along with 
the  patterns  to  extract  them.  The  user  is  able  to  correct  the 
instances  and  save  the  extraction  patterns.  Immediately 
afterward,  while  searching  log  events   the  newly-taught  fields 
will be extracted from the event's raw text.

Categories and Subject Descriptors
I.I.2.6  Artificial  Intelligence  –   Learning  :  Knowledge 
Acquisition, 

II.I.5.5 Artificial Intelligence – Pattern Recognition : Interactive 
Systems

General Terms
Algorithms, Experimentation

Keywords
Log  files,  data  center,  information  retrieval  (IR),  information 
extraction (IE). 

1. Introduction
Today, the modern datacenter  can consist  of  thousands of 

servers,  each  running  dozens  of  applications,  which  output 
hundreds  of  log  files,  documenting  what  they  are  doing  and 
when.  It is not atypical for gigabytes of log files to be generated 
per  day.  For  the  system  administrator  or  analyst  trying  to 
understand what his system is doing, this is a daunting task.  

Consider  the failure of one server  running out of memory. 
This might crash a custom database application, with its own log 
files, resulting in another server's application failing, with its own 
log files.   Eventually,  these failures  may cause other servers  to 
fail.  Trying to forensically diagnose what went wrong involves 
discovering  which  machines  failed  first,  which  applications  on 
those machines failed, and why.  

There  are  several  reasons  why  this  is  a  particularly  hard 
problem.  First,  gigabytes  of  new data  may  be generated  daily. 
Second,  despite expectations,  log files are not simple structured 
records.  The truth is that any software  programmer  who knows 
how  to  call  printf()  is  a  log  producer,  and  rarely  are  logs 
consistent  within  an  application,  and  certainly  not  across 
applications and versions.  Sometimes,  a logged error event will 
say "out of memory," but just as likely is an event to indicate out 
of  memory  with  a  “-1”  in  a  very  specific  area  (e.g.,  the  3rd 

number after a “]”). 
Splunk  tries  to  solve  many  of  the  system  administrator's 

problems  with a powerful  distributed  search  engine that  knows 
how to handle log files better than traditional document retrieval 
systems.   But  critical  to the value of searching  log  files  is  the 
ability to understand those events.

In  this  paper,  we  describe  a  semi-automatic  method  of 
teaching  the  system  how  to  extract  knowledge  at  search  time 
from log files.   Once  the system knows how to extract  a field 
from  a  log  event's  raw  text,  more  powerful  operations  can  be 
performed.   For example, rather than just searching for "-1" and 
returning  many  irrelevant  results,  we  can  then  search  for 
"memory_code=-1",  where  an  event's  memory_code  value  is 
extracted automatically.  We can cluster events by memory_code 
values  and notify  users  when unexpected values are seen.   The 
result is fast, flexible, interactive log analysis. 

2. Extraction Patterns 
Information extraction (IE) on log files is typically done by 

manually-created  regular  expressions.  A  typical  example  is 
Splunk's manual method of specifying well-known codes used in 
Cisco log files:

  [cisco-codes]

  REGEX = : %(\w+)-(?:\w+-)?[0-7])-(\w+): 

  FORMAT = product::$1 code::$2 severity::$3

This specifies that, from the raw text of a Cisco log event, 
we should set the "product" field to the first alphanumeric after a 
": %"; "code", to the value after that; and "severity" to the value 
after  that.   This  manual  method  is  time-consuming  and  error 
prone, and as a result, we need an automated method to generate 
extraction patterns.  
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3. Discovering Extraction Patterns
Several  algorithms  have  been  developed  to  automatically 

learn  to  extract  values,  but  most  of  these  algorithms  require 
special  training resources,  such as marked-up data files or large 
lists of extraction examples.  For the sheer variety of log formats 
and  versions,  providing  large  amounts  of  training  data  is 
decidedly  impractical.   Further,  our  goal  is  to  discover  good 
extraction  patterns,  and  not  simply  the  one-time  discovery  of 
extracted values.

As the basis for discovering extraction patterns,  we looked 
to  Riloff  [1]  and  Soderland  [2]  on  learning  dictionaries  in  the 
context  of  natural  language  processing.   Riloff's  mutual-
bootstrapping technique uses unannotated data and a handful of 
seed words,  from which it bootstraps initial  extraction  patterns, 
which are the basis for learning additional words, which in turn 
refines the extraction patterns.  

3.1 Extraction Discovery
Our method differs in several important ways.  First, Riloff's 

goal  was to discover  good terms,  while  our goal  is to discover 
good extraction patterns for future use.  As a result,  we are not 
directly concerned  with  scoring  extracted  terms.   Second,  our 
algorithm is used within an interactive environment and therefore 
allows  for  user  feedback  on  the  terms  discovered,  thereby 
affecting the extraction patterns generated.  Third, because of the 
interactive  environment,  we  are  less  concerned  with  over-
generating  incorrect  terms,  and,  as  a  result,  we  generate 
extraction  patterns  from  all  known  values  with  each  iteration, 
rather than only from the initial seed values.  Finally, our usage 
does  not  use  linguistic  extractions  of  the  form  “hijacking  of 
<np>”, but uses regular expressions more in tune with the log file 
world:  structure  varies  less  than  natural  language,  surrounding 
fields can have an unlimited number of values, and punctuation is 
critical.  

Extraction Discovery Algorithm:
events = { input log events }
good_values = { input seed field value terms }
bad_values = {}
patterns = {}
for i = 1 to 5:
  # generate patterns for each instance of 
  # each good_value in events, keeping track of
  # which values each pattern extracted
  patterns = genPatterns(events, good_values)
  # if too many patterns, just keep the best
  # scoring patterns, where a pattern's score is 
  # proportional to the percent of its unique
  # extractions that are in good_values
  prune(patterns)
  # run patterns over events for more extractions
  extractions = extractValues(events, patterns)
  # get feedback from user as to which
  # extractions are erroneous
  bad_values = user feedback on extractions
  # add to good_values any accepted extraction
  good_values += extractions – bad_values
  # remove any pattern that generated a bad_value
  removePatterns(patterns, bad_values) 
  if no change in patterns: break
save(patterns)

3.2 Pattern Generation
Given the raw log samples in Listing 1, to extract “crond”,  one 
could imagine a large variety of regular expressions that could be 
generated, requiring rigid conformity to the number and type of 
characters  before  and  after  the  process_name  field  value  in 
question,  as well as for the field value itself.   For example,  one 
could imagine an expression such as:

[A-Z][a-z][a-z] [0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-
9] [a-z]{7} ([a-z]{5})\([a-z]{3}_[a-z]{4})....

Through empirical trial-and-error, it became clear that it is highly 
desirable for users to easily understand the patterns generated, as 
they  may  need  to  manually  modify  them  in  rare  situations. 
Therefore,  simpler  patterns,  even at  the expense  of some over-
generalization, are desirable.  Specifically:

Rarely is the number of characters critical when character 
types  (e.g.,  alphabetic,  numeric,  whitespace,  etc.) 
consecutively repeat.  Additionally, alphabetic case is rarely 
critical.  Thus,  “chrond”,  rather  than  being  represented  as 
“[a-z]{6}”,  could  be  represented  as  “\w+”  (one  or  more 
alphanumeric values).

Rarely  is  it  important  to  specify  what  comes  after  the 
extracted  field  value.   We  limit  this  constraint  to just  the 
single punctuation character after the extracted value. Thus 
we only specify that the process_name must end with a “(” 
or “[”, rather than fully specifying what comes after.

In log files most punctuation is so structurally meaningful 
that it is enough to count the number  of occurrence of the 
punctuation  just  before  the  value,  rather  than  fully 
specifying  the  complete  expression  that  occurs  before  the 
field value.

Thus,  rather  than  fully  specifying  the  prefix  “Mar  10 
16:49:29 mcdavid ” to get to “chrond”, we skip past the first two 
colons  to get in the ballpark,  and then skip past  the next  word 
(e.g.,  “mcdavid”).   The  result  is  a  concise  and  understandable 
pattern.  

Pattern Generation Algorithm
genPatterns(events, values):
  patterns = {}
  for each event in events:
    for each value in values:
      if value in event:
        patterns += genPattern(event, value)
  return patterns

genPattern(event, value):   
  start = event.position(value)
  end = start + value.length()
  prefix = genPrefixRegex(event[0:start])
  value_regex = genRegex(value)
  suffix = event[end]
  punct = "\t()[]{}*+^$!-\\?!@#%+=:<>,? "
  if suffix not in value and suffix not in punct:
    suffix = “”
  return prefix+'('+value_regex+')'+suffix

genPrefixRegex(prefix):
  puncts = "\t()[]{}*+^$!-\\?!@#%+=:<>,?"
  last_pos = pos of right most punct in prefix
  last_punct = prefix[last_pos]
  count = count of last_punct in prefix
  # regex skips count of the last punct
  regex = "(?:.*?”+last_punct+“){”+count+“}”
  # add on any values after the last punct
  regex += genRegex(prefix[last_punct+1:]) 



# given “mcdavid <613>” return “\w+ <\d+>”
genRegex(value):
  regex = “”
  for each ch in value:
    if ch is alphabetic or numeric:
       handle case where previous ch 
       was the same type and just append “+”
    # for a-z, use \w; for 0-9, use \d, 
    # otherwise use append literal character   
    regex += regex_type(ch)
  return regex 

4. Example Usage  
Given a set of syslog events (sample in Listing 1), an actual user 
learning to extract fields might operate as follows:  
1. User  searches  his server  and narrows  in on a specific  syslog 
file.  He discovers in the search results that the system does not 
know about  the "process_name"  field.   Given an event  such as 
"Mar  10  16:50:02  mcdavid  crond(pam_unix)[9639]:  session 
closed for user root", the process_name would be "crond".
2. User selects the "crond" text and clicks on "Learn Field".
3. The  system  takes  the  search  results  and  the  seeding  term, 
"crond",  and  discovers  an  initial  set  of  extraction  patterns, 
showing  the patterns,  the values  they extracted,  and the search 
results. (Output 1 shows these results.)
4. The user notices that the search results have an “ntpd” process, 
but it is not one of the extracted process names.  The ntpd syslog 
events have a slightly different format, and the pattern generated 
did not extract it.  The pattern learned in Output 1  works on the 
first  two examples  of Listing  1, but not  the third,  which  has  a 
different format.
5. The  user  tells  the  system  that  it  should  have  also  extracted 
"ntpd" and the system now relearns the patterns given the seeds 
“crond” and “ntpd”.  The system then correctly handles the user's 
field.  (Output 2 shows these results.)
6. If  the  user  is  satisfied,  he  tells  the  system  to  save  the 
extraction patterns and use them on syslog events.   At his next 
seach of syslog events, process_name will be extracted at search 
time and can be used in the search itself.  For example, the user 
can now search for "opened for user root process_name=crond".
7. At any point the user can now upload his extraction patterns to 
SplunkBase.com,  Splunk's  community  knowledge-sharing  site, 
effectively  sharing  them  with  the  tens  of  thousands  of  users. 
Over time, all file types and versions can be effectively covered 
by the community.

Listing 1. Raw Log Event Samples

Mar 10 16:49:29 mcdavid su(pam_unix)[9596]: session opened for user 
root by (uid=500)
Mar 10 16:50:01 mcdavid crond(pam_unix)[9638]:  session opened for 
user root by (uid=0)
Mar 10 16:56:32 mcdavid ntpd[2544]: synchronized to 138.23.180.126, 
stratum 2

Output 1. Initial Extraction Patterns

Input:
“crond” seed term and raw log events from Listing 1.

Output Patterns:
# skip to the second colon, then past a number, a word, 
# and finally extract the word before an open parenthesizes:
(?:.*?:){2}\d+ \w+ (\w+)\( 

Output Extractions: 
crond, packet, sshd, su

Output 2. Improved Extraction Patterns

Input:
“crond, ntpd” seed terms and raw log events from Listing 1.

Output Patterns:
# skip to the second colon, then past a number, a word, 
# and finally extract the word before an open parenthesizes 
# or an open square bracket:
(?:.*?:){2}\d+ \w+ (\w+)\( 
(?:.*?:){2}\d+ \w+ (\w+)\[ 

Output Extractions: 
crond, packet, sshd, su, snmpd, osirisd, splunkd, auditd

5. Conclusion
In this paper, we have described an interactive extraction learning 
algorithm that discovers useful regular expression patterns.  With 
simple  point-and-click actions,  the search user is empowered to 
name any unknown field, and teach the system how to extract its 
values, freeing users from manually creating regular expressions.
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