
Semi-Automatic Discovery of Extraction Patterns
for Log Analysis

David Carasso
Splunk Inc.

San Francisco, CA
(415) 848-8400

david@splunk.com

Abstract

This paper presents an interactive bootstrapping process used in
Splunk that automatically learns to extract fields from log events.
End users simply select one or more example values of a field
and a learning process discovers additional instances, along with
the patterns to extract them. The user is able to correct the
instances and save the extraction patterns. Immediately
afterward, while searching log events the newly-taught fields
will be extracted from the event's raw text.

Categories and Subject Descriptors
I.I.2.6 Artificial Intelligence – Learning : Knowledge
Acquisition,

II.I.5.5 Artificial Intelligence – Pattern Recognition : Interactive
Systems

General Terms
Algorithms, Experimentation

Keywords
Log files, data center, information retrieval (IR), information
extraction (IE).

1. Introduction
Today, the modern datacenter can consist of thousands of

servers, each running dozens of applications, which output
hundreds of log files, documenting what they are doing and
when. It is not atypical for gigabytes of log files to be generated
per day. For the system administrator or analyst trying to
understand what his system is doing, this is a daunting task.

Consider the failure of one server running out of memory.
This might crash a custom database application, with its own log
files, resulting in another server's application failing, with its own
log files. Eventually, these failures may cause other servers to
fail. Trying to forensically diagnose what went wrong involves
discovering which machines failed first, which applications on
those machines failed, and why.

There are several reasons why this is a particularly hard
problem. First, gigabytes of new data may be generated daily.
Second, despite expectations, log files are not simple structured
records. The truth is that any software programmer who knows
how to call printf() is a log producer, and rarely are logs
consistent within an application, and certainly not across
applications and versions. Sometimes, a logged error event will
say "out of memory," but just as likely is an event to indicate out
of memory with a “-1” in a very specific area (e.g., the 3rd

number after a “]”).
Splunk tries to solve many of the system administrator's

problems with a powerful distributed search engine that knows
how to handle log files better than traditional document retrieval
systems. But critical to the value of searching log files is the
ability to understand those events.

In this paper, we describe a semi-automatic method of
teaching the system how to extract knowledge at search time
from log files. Once the system knows how to extract a field
from a log event's raw text, more powerful operations can be
performed. For example, rather than just searching for "-1" and
returning many irrelevant results, we can then search for
"memory_code=-1", where an event's memory_code value is
extracted automatically. We can cluster events by memory_code
values and notify users when unexpected values are seen. The
result is fast, flexible, interactive log analysis.

2. Extraction Patterns
Information extraction (IE) on log files is typically done by

manually-created regular expressions. A typical example is
Splunk's manual method of specifying well-known codes used in
Cisco log files:

 [cisco-codes]

 REGEX = : %(\w+)-(?:\w+-)?[0-7])-(\w+):

 FORMAT = product::$1 code::$2 severity::$3

This specifies that, from the raw text of a Cisco log event,
we should set the "product" field to the first alphanumeric after a
": %"; "code", to the value after that; and "severity" to the value
after that. This manual method is time-consuming and error
prone, and as a result, we need an automated method to generate
extraction patterns.

mailto:david@splunk.com

3. Discovering Extraction Patterns
Several algorithms have been developed to automatically

learn to extract values, but most of these algorithms require
special training resources, such as marked-up data files or large
lists of extraction examples. For the sheer variety of log formats
and versions, providing large amounts of training data is
decidedly impractical. Further, our goal is to discover good
extraction patterns, and not simply the one-time discovery of
extracted values.

As the basis for discovering extraction patterns, we looked
to Riloff [1] and Soderland [2] on learning dictionaries in the
context of natural language processing. Riloff's mutual-
bootstrapping technique uses unannotated data and a handful of
seed words, from which it bootstraps initial extraction patterns,
which are the basis for learning additional words, which in turn
refines the extraction patterns.

3.1 Extraction Discovery
Our method differs in several important ways. First, Riloff's

goal was to discover good terms, while our goal is to discover
good extraction patterns for future use. As a result, we are not
directly concerned with scoring extracted terms. Second, our
algorithm is used within an interactive environment and therefore
allows for user feedback on the terms discovered, thereby
affecting the extraction patterns generated. Third, because of the
interactive environment, we are less concerned with over-
generating incorrect terms, and, as a result, we generate
extraction patterns from all known values with each iteration,
rather than only from the initial seed values. Finally, our usage
does not use linguistic extractions of the form “hijacking of
<np>”, but uses regular expressions more in tune with the log file
world: structure varies less than natural language, surrounding
fields can have an unlimited number of values, and punctuation is
critical.

Extraction Discovery Algorithm:
events = { input log events }
good_values = { input seed field value terms }
bad_values = {}
patterns = {}
for i = 1 to 5:
 # generate patterns for each instance of
 # each good_value in events, keeping track of
 # which values each pattern extracted
 patterns = genPatterns(events, good_values)
 # if too many patterns, just keep the best
 # scoring patterns, where a pattern's score is
 # proportional to the percent of its unique
 # extractions that are in good_values
 prune(patterns)
 # run patterns over events for more extractions
 extractions = extractValues(events, patterns)
 # get feedback from user as to which
 # extractions are erroneous
 bad_values = user feedback on extractions
 # add to good_values any accepted extraction
 good_values += extractions – bad_values
 # remove any pattern that generated a bad_value
 removePatterns(patterns, bad_values)
 if no change in patterns: break
save(patterns)

3.2 Pattern Generation
Given the raw log samples in Listing 1, to extract “crond”, one
could imagine a large variety of regular expressions that could be
generated, requiring rigid conformity to the number and type of
characters before and after the process_name field value in
question, as well as for the field value itself. For example, one
could imagine an expression such as:

[A-Z][a-z][a-z] [0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-
9] [a-z]{7} ([a-z]{5})\([a-z]{3}_[a-z]{4})....

Through empirical trial-and-error, it became clear that it is highly
desirable for users to easily understand the patterns generated, as
they may need to manually modify them in rare situations.
Therefore, simpler patterns, even at the expense of some over-
generalization, are desirable. Specifically:

Rarely is the number of characters critical when character
types (e.g., alphabetic, numeric, whitespace, etc.)
consecutively repeat. Additionally, alphabetic case is rarely
critical. Thus, “chrond”, rather than being represented as
“[a-z]{6}”, could be represented as “\w+” (one or more
alphanumeric values).

Rarely is it important to specify what comes after the
extracted field value. We limit this constraint to just the
single punctuation character after the extracted value. Thus
we only specify that the process_name must end with a “(”
or “[”, rather than fully specifying what comes after.

In log files most punctuation is so structurally meaningful
that it is enough to count the number of occurrence of the
punctuation just before the value, rather than fully
specifying the complete expression that occurs before the
field value.

Thus, rather than fully specifying the prefix “Mar 10
16:49:29 mcdavid ” to get to “chrond”, we skip past the first two
colons to get in the ballpark, and then skip past the next word
(e.g., “mcdavid”). The result is a concise and understandable
pattern.

Pattern Generation Algorithm
genPatterns(events, values):
 patterns = {}
 for each event in events:
 for each value in values:
 if value in event:
 patterns += genPattern(event, value)
 return patterns

genPattern(event, value):
 start = event.position(value)
 end = start + value.length()
 prefix = genPrefixRegex(event[0:start])
 value_regex = genRegex(value)
 suffix = event[end]
 punct = "\t()[]{}*+^$!-\\?!@#%+=:<>,? "
 if suffix not in value and suffix not in punct:
 suffix = “”
 return prefix+'('+value_regex+')'+suffix

genPrefixRegex(prefix):
 puncts = "\t()[]{}*+^$!-\\?!@#%+=:<>,?"
 last_pos = pos of right most punct in prefix
 last_punct = prefix[last_pos]
 count = count of last_punct in prefix
 # regex skips count of the last punct
 regex = "(?:.*?”+last_punct+“){”+count+“}”
 # add on any values after the last punct
 regex += genRegex(prefix[last_punct+1:])

given “mcdavid <613>” return “\w+ <\d+>”
genRegex(value):
 regex = “”
 for each ch in value:
 if ch is alphabetic or numeric:
 handle case where previous ch
 was the same type and just append “+”
 # for a-z, use \w; for 0-9, use \d,
 # otherwise use append literal character
 regex += regex_type(ch)
 return regex

4. Example Usage
Given a set of syslog events (sample in Listing 1), an actual user
learning to extract fields might operate as follows:
1. User searches his server and narrows in on a specific syslog
file. He discovers in the search results that the system does not
know about the "process_name" field. Given an event such as
"Mar 10 16:50:02 mcdavid crond(pam_unix)[9639]: session
closed for user root", the process_name would be "crond".
2. User selects the "crond" text and clicks on "Learn Field".
3. The system takes the search results and the seeding term,
"crond", and discovers an initial set of extraction patterns,
showing the patterns, the values they extracted, and the search
results. (Output 1 shows these results.)
4. The user notices that the search results have an “ntpd” process,
but it is not one of the extracted process names. The ntpd syslog
events have a slightly different format, and the pattern generated
did not extract it. The pattern learned in Output 1 works on the
first two examples of Listing 1, but not the third, which has a
different format.
5. The user tells the system that it should have also extracted
"ntpd" and the system now relearns the patterns given the seeds
“crond” and “ntpd”. The system then correctly handles the user's
field. (Output 2 shows these results.)
6. If the user is satisfied, he tells the system to save the
extraction patterns and use them on syslog events. At his next
seach of syslog events, process_name will be extracted at search
time and can be used in the search itself. For example, the user
can now search for "opened for user root process_name=crond".
7. At any point the user can now upload his extraction patterns to
SplunkBase.com, Splunk's community knowledge-sharing site,
effectively sharing them with the tens of thousands of users.
Over time, all file types and versions can be effectively covered
by the community.

Listing 1. Raw Log Event Samples

Mar 10 16:49:29 mcdavid su(pam_unix)[9596]: session opened for user
root by (uid=500)
Mar 10 16:50:01 mcdavid crond(pam_unix)[9638]: session opened for
user root by (uid=0)
Mar 10 16:56:32 mcdavid ntpd[2544]: synchronized to 138.23.180.126,
stratum 2

Output 1. Initial Extraction Patterns

Input:
“crond” seed term and raw log events from Listing 1.

Output Patterns:
skip to the second colon, then past a number, a word,
and finally extract the word before an open parenthesizes:
(?:.*?:){2}\d+ \w+ (\w+)\(

Output Extractions:
crond, packet, sshd, su

Output 2. Improved Extraction Patterns

Input:
“crond, ntpd” seed terms and raw log events from Listing 1.

Output Patterns:
skip to the second colon, then past a number, a word,
and finally extract the word before an open parenthesizes
or an open square bracket:
(?:.*?:){2}\d+ \w+ (\w+)\(
(?:.*?:){2}\d+ \w+ (\w+)\[

Output Extractions:
crond, packet, sshd, su, snmpd, osirisd, splunkd, auditd

5. Conclusion
In this paper, we have described an interactive extraction learning
algorithm that discovers useful regular expression patterns. With
simple point-and-click actions, the search user is empowered to
name any unknown field, and teach the system how to extract its
values, freeing users from manually creating regular expressions.

6. References
[1]E. Riloff and R. Jones. 1999. Learning Dictionaries for In-
formation Extraction by Multi-Level Bootstrapping. In
Proceedings of the AAAI-99.
http://www.cs.utah.edu/~riloff/publications.html

[2]Soderland, S.; Fisher, D.; Aseltine, J.; and Lehnert, W. Issues
in Inductive Learning of Domain-Specific Text Extraction Rules.
In Proceedings of the Workshop on New Approaches to Learning
for Natural Language Processing at the Fourteenth International
Joint Conference on Artificial Intelligence, 1995.
http://citeseer.ist.psu.edu/soderland95issues.html

http://www.cs.utah.edu/~riloff/publications.html

	1. Introduction
	2. Extraction Patterns
	3. Discovering Extraction Patterns
	3.1 Extraction Discovery
	3.2 Pattern Generation

	4. Example Usage
	5. Conclusion
	6. References

